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INTRODUCTION

This workshop will deal with the ideas and concepts vital to any
junior high school mathematics program. The organization was
determined by two major goals: (1) To provide an in- service
training workshop which would be of immediate use to the junior
high school mathematics teacher, and (2) to provide the teacher
with an overview of the major objectives of a junior high school
mathematics program and the theory upon which these objectives
are based.

This last objective is an especially important one. If the teacher
of today' s mathematics does not understand how those principles
of mathematics which are taught fit into the broad objectives of
mathematics education, that teacher will be sharply limited in
the accomplishment of his task.

To these ends "Sets, Sentences, and Systems" was written. It
is hoped that this workshop will be both an enjoyable and profit-
able experience for you.



TABLE OF CONTENTS

PAGES

I. PRELIMINARY NOTIONS 1 - 18

A. INTRODUCTION

B. SET THEORY

C. THE MATHEMATICAL SENTENCE

II. THE NATURAL NUMBER SYSTEM 19 - 29

III. THE SYSTEM OF INTEGERS 29 - 38

IV. THE RATIONAL NUMBER SYSTEM 39 - 56



UNIT I

SET THEORY

INTRODUC TION

What is meant in mathematics by the term, "sets" ? What is the
role of the " set" in the present development of mathematics?
Questions such as these are unavoidable in a time when mathe-
matics education is undergoing ..such revolutionary changes. It
is quite possible for two matherriatician.s to spend their entire
lives studying mathematics and yet not understand what the other
is doing.

In order to meet the challenge of teaching mathematics for an age
when mathematics knowledge is increasing in almost astronomical
proportions, new courses have been devised and along with this,
the more standard mathematics courses have been brought up to
date.

One means by which mathematics has been unified and brought up
to date is the innovation of Set Theory. An understanding of sets
is a foundation upon which many concepts of mathematics are
developed.



TI:lEORY OF SETS

. PRELIMINARY NOTIONS

SET It is not possible to give a definitive explanation of the wordMINIIMONIMPON

"set", but we shall think of a set as a well-defined collectionof objects. Each object in a set is called an element of the. set or, a member of the set.

Examplei The number 2 is a member of the set of naturalnumbers. In symbols the small case greek letter
"epsilon", (6), means "is a member of."

SET DESIGNATION Generally speaking, a set can be designated inthree different ways. However, it must be remembered thata set must he well-defined. This means that only two possibi-lities can exist; some object (1) is a member (in symbols," 6 ", or (2) is not a member (in symbols, 41 of any givenset. The set designation must be so clear as to specify allpossible elements or members of a particular set.
Three ways will be considered in designating sets:

(3.) A set may be designated by a statement.
Example: A is the set of all natural numbers

between 1 and 5.
(1) A set may be designated by the Listing Method.

Ar. {2, 3, 4). The "braces" you see enclosingthe numerals are used to indicate a set.(3) A set may be designated by the Rule Method or, as itis sometimes called, the Conditional Method.Example: : 1 < x < 5, x NTThe colon is read"such that." The symbol ">" is read "greater than,"the symbol "<" is read "less than," and let N be theset of natural numbers. The example in its entirety
would be read "A is the set of all x such that each xis a natural number greater than 1 and less than 5."
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SPECIAL SETS 'in order to avoid certain dilemmas that might arise
later on, two special sets will be defined.
(1) Empty Set The Empty Set is a set which contains

no elements. This set is sometimes
called Null Set, Void Set, or Vacuous Set.
The symbol for the empty set is the greek
letter "phi" (0), or { } .

Example: The set of all people who have three heads.
Since this set would have no members, it
would be designated as an empty set.

(2) Universal Set In adopting the Rule Method of desig-
nating sets, we sometimes specify that only
certain elements may be used as replace-
ments for the variable "X ". When this is
done, a special set is invented called the
Universal Set., Only from this special set can
the replacements for "x" be obtained. The
Universal Set is sometimes called the
"Replacement Set".

Example: A { x : 1 < x < 5, x C Ns} . In this in
(or for this discussion) the universal set is
the set of natural numbers. Thus 2 1/2
cannot be considered as a replacement for x.

SET RELATIONS When two sets from the same Universal Set are part
of a discussion, we may find that the sets have some or
all or no members in common. In set theory, we have
specific terminology to describe such situations.

SUBSET (INCLUSION) Some set (call the set "Set A") is a subset of

some other set (call this set "Set D") if every element
of set A is also an element of set D. In symbols, we
write A D. A careful application of the definition
would indicate that LK- D and (if D.

PROPER SUBSET (PROPER INCLUSION) Some set A is a proper subset
of some set D if, (1) A is a subset of D, and (2) there
is at least one element of D which is not in A. In symbols
we write A` D, which is read, "A is a proper subset

g of D".
Examples: (1) Consider a universal set which consists

of the letters of the alphabet, i.e.,
U b, c... x, y, z} . Consider these sets:
G= {t, r, y} K= {e, r.u} P= {u,r,e,q,f}
Y = {e, r, u }. According to the definitions
G, K, P, and Y are all proper subsets of the
universal set.
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Exercise: Using the 'universal set given in example 1
and the subsets given in the same example,
state if the following are true or false. Also,
explain why they are true or false.
(a) G au
(b) K
(c)
(d) Kc.P and Kc-P

Exercise (answers)
(a) True. GcU since every element of G is an element

of U.
(b) True. G4K since the elements of G are not elements

of K.
(c) True. Y is a proper subset of P since every element

of Y is an element of P and P contains at least one
element which is riot an element of Y.

(d) True. K is a subset of P since every element of

K is an element of .P. Also; K is a proper subset
of P since P contains at leak one element which
is not an element of Y.

EQUAL SETS (IDENTITY) Two sets are identical if the two sets contain
exactly the same elements. If two sets are identi-
cal, they are referred to as the same set, equal
sets or identical sets. In symbols we write A=D.

If two sets are not equal we write A D.

There is an interesting correlation between the preceding relations of
subsets aryl equal sets when one considers that for two sets to be equal,
every element of set A must be an element of set D; and every element
of set D must be an element of set A. Therefore, it can be stated that
: A= D if and only if A c: D and. Dc A.

Exercises:
(I) Describe the following sets in words:

(a) {2, 4, 6, 8}
(b) {I, 3, 5, 7}
(c) {0, 3, 6, 9, 12, 15, 18}
(d) {a, e, 1, o, Li, y}

(2) Use the listing method to describe the
following sets:
(a) The set of all letters in the alphabet used

in spelling the word "FOLLOW".
(b) The set of all consonants in the alphabet.
(c) The set all people in the world who are

500 years old.
(3) If U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} , tell if the

following are true or false:
(a) 14, 5, 7} C U
(b) The set of whole numbers greater than or

equal to 0 and less than 10 is equal to the
et IT



tt..,10.77,rveywrt+,1-ef,7; T

4.

(e) x x is positive} C U
(d) {2, 3, 4} = {4, 3, 2}
(e) {1, 3, 5, 7} C U

Exercises (Answers):
(1) a) The set of all even numbers greater than 0

and less than 10.
b) The set of odd numbers greater than 0 and

less than 9.
c) The set of all multiples of 3, from 0 to 18

inclusive.
d) The set of vowels in the English Alphabet.

(2) {F, o, L, w}
b) {b, c, d, fp gs, h, k, 1, nis n, p, q, r, St X, z}
c)

(3) a) True. 4, 5, 7 are all members of Uo.nd
U has members not contained in {4, 5, 7).

b) True.
c) False. 10 is positive and not a member of

U.
d) True. Changing the order does not change

the set.
e) True. All elements of the set are members

of U, and U contains at least one member
which is not in {1, 3, 5, 7).

SET OPERA_ TIONS The next step in the discussion of set theory is to state
some actions or operations which can be performed on
any two sets. Some of these operations have similarities
to operations of Arithmetic.

SET INTERSECTION Frequently in set theory the case arises where two
sets contain elements which are the same. These elements
can be referred to in a variety of ways, e. g., "elements
common to the sets". The definition of set intersectior
is as follows:

DEFINITION The intersection of two sets (call these sets A and is
the set of all elements which are in set A and also in
set D. Using symbols, A n D is read "the intersection
of A and D". Intersection is a relation involving two sets.
Thus it is referred to as a binary -operation. Using the
rule method to name a set, we have A n B ={x:xE.A and xc.B}.
Exampie2 If K={2, 3, 4} and L= {4, 5, 6} then I< fl L={4} . Two
sets are referred to as DISJOINT if their intersection is
the empty set.
Let F={3, 4, 5) and 13={10, 100, 200} then An B={ } or 0.



SET UNION
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Exercises Find the intersections of the following sets:

(a) If R={:4, w, r} and I = {o, r, t, v} then R f I=
(b) If Y={ 5, 6, 7} and H={ 7, 8, 9} then Y H=
(c) If M={#, $, %,10 and D = {(, $,#, 6} then

M D=
(d) What would be the intersection of the set of

even numbers and the set of odd numbers ?
(e) If the intersection of two sets is the empty

set, what conclusion can always be made
about the two sets?

Exercises (Answers)
(a) R fl I= {r, w}
(b) Y fl H= {6.7}
(c) M D= { #,$}
(d) The intersection of the set of even numbers

and the set of odd numbers is the empty set
since there are no elements common to both.

(e) If two sets are intersected and the result is the
empty set, one can conclude that the sets must
be disjoint.

The next operation is reminiscent of the operation of
addition in arithmetic. By forming a set of elements
consisting of all the elements in two given sets, we
have united the two sets.

DEFINITION The union of two sets A and D is the set of all elements
which are in the set A or in the set D, or in both sets
A and B. In symbols, A U D means "the union of
A and D". As in the case of intersection, union is a
relation involving two sets, and thus is a binary
operation. Using the rule method to name a set
we have A U B={x:x c. A or x B}
Examalet:If A= {a, c, g} and D ={ s, t, yl
then A U D={a, c, g, s, t, y}.
If K={ 1, 3, 5, 7} and L=11, 3, 9, 111 then KU L=11, 3, 5, 7, 9, 11).
Note that the elements "1" and "3" appear in both sets K and L.
However, by definition these elements appear in the set
union only once.

SET COMPLEMENTATION If Z is a subset of some universal set U, then
the complement of Z with respect tc215 is the set of all
elements in U which are not in Z. This set is also called
the complement of Z.. In symbols, "the complement of Z"
is written as :V, 2 or Z. It should be noted that V is
an operation involving only one set. Thus complementation
is a unary operation, as distinguished from intersection and



union which are binary operations. Using the rule
method to name a set, we have Z' ={x x U and x4t Z} .

Exam les : Let the universal set be:
U= 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} L={ 5, 6, 7, 8} M={2, 5, 7, 91

G={ 3, 6, 9} , then
(a) L'={1, Z, 3,4, 9,10}
(b) M'={1,
(c) G ={1,

3, 4, 6, 8, 10}

2, 4, 5, 7, 8, 10}
(d) What set do you think is the complement of U?

RELATIVE COMPLEMENT If we wish to find the complement of a set
in relation to another set (different from the universal
set), we say we wish to find the relative complement
of the set. The relative complement of a set Q with
respect to set P is the set of all elements in P exclu-
sive of the elements in Q. Using the rule method,
this would be the set, { x : x 4 P and x Q}. Note
that it is not necessary for OA° be a subset of P.

Example: If S=.{2, 4, 6, 8, 10} and G={1, 2, 3, 4, 5, 6, 7},

then the relative complement of S with respect to G
is the set consisting of the elements 1, 3, 5, 7, and
this would be written as : G S = {1, 3, 5, 7} . "G S"

is read, " The relative complement of S with respect
to G".
Exercises: (1) Given the universal set U={1, 2, 3,4, 5, ...
and three subsets K={2, 4, 6, 8}, D={1, 3, 5, 7}, and
R={8, 9, 10}; perform the following operations:
(a) K UD =
(b) K (I D =
(c) D)1J K =
(d) R- K =

(e) K D =
(1) K' =
(g) R =
(h) =

(2) Using the sets given in example 1, state whether
the following are true or false. Also, give reasons to
support your answers.
(a) K (e) U A 0 =
(b) KC D (f) R K R
(c) KU U U (g) u)u R = R
(d) RAU= U (h) R and K are disjoint sets

6.
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Exercises (Answers):
(1) (a) = {1, 2, 3, 4, 5, 6, 7}

(b) K CI D = (i
(c) (R U D) K = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

12, 13,

(d) R -K= {9,10}
(e) K D {2, 4, 6, 8}
(f) D' = {2, 4, 6, 8, 9, 10
(g) R = {1, 2, 3, 4, 5, 6, 7, 11,
(h) = {1, 3, 5, 7, 9, 10, II,

(2) (a) False. The elements of K are not contained in D.
(b) False.
(c) True. Since the operation of union states that

elements common to the two sets are to be
included in the union only once, the resulting
set would be identical to U.

(d) False. Not all of the elements in U are shared
or also elements of R.

(e) True. Since there are no elements in common,
the intersection must be the empty set.

(1) False. R includes the elements 9 and 10 which
are not found in K.

(g) True. R f U is equal to R and R U R=R
(h) False. The element "8" is an element of both

sets.

CARTESIAN CROSS PRODUCT The next set operation resembles the
arithmetic operation of multiplication. However, it
is important to remember that operations in one system
of mathematics need not have a place in other systems
of mathematics.

DEFINITION Consider some finite set F = {2, 3, 4, 5} and some other
finite set N 4 {a, s }. The Cartesian Cross Product of
F and N (sometimes called the "cross product" of
F and N) is defined as being equal to the set of all
ordered pairs formed by matching (or crossing) each
element of set F with each element of set N. In
symbols, the cross product of F and N is written
" F x N " . Thus,
F x N = {(2, a), (2, s), (3, a), (3, s), (4, a). (4, s), (5, a), (5, s)}

When performing this operation of matching each element
of F with each element of N to form a set of ordered pairs,
it should be noted that the phrase, "ordered pair" is used
in the strictest sense. An ordered pair is first, a pair,
because two elements are involved. Second, these pairs
are constructed observing a strict order, i. e. , the first



element in each pair comes from the set F and the
second element comes from set N. Any other formu-
lation would violate the definition. Note that this is a
binary operation. Using the rule method this would
be the set, {(x, y) : x f.F and Y e N).

VENN DIAGRAMS AND VERIFICATION

There is an interesting way of giving physical representations of opera-
tions. on sets and relations of sets. This physical representation is re-
ferred to by the term "Venn Diagram". First there are some prelimi-
nary notions which are stated.

8.

For no particular reason, other than clarification of an abstract idea, the
universal set is portrayed by the points of a rectangle (usually, although
other plane figures are sometimes used) plus the interior of the rectangle.
Any subsets of U (in all but a few cases, proper subsets) are represented
by the points of circles plus their interiors.

Although, Venn Diagrams show both relations of sets and operations on
sets, it seems as though their major function is the latter, i. e. , to give
a vivid picture of set operations.

Example: Consider some universal set U and two proper subsets of U,
denoted by Z and F. Let us further state that Z is a proper subset of F,
1. e., Z CF. The problem will be to show the union of Z and F,, 1. e.,
Z J F.

Figure A Figure B

Figure A shows the relation of Z and F, while Figure B
shows the union of Z and F most vividly by shading the
area determined by Z V F.
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Example: Consider some universal set U and two proper subsets
of U, W. and L. However, unlike the first example,
W L and 4W, but they do have some elements in
common.
Problem: Show W U L.

U
W u L

Example: Consider some universal set U and two proper subsets
of U, P and S. Also, we define P and S to be Disjoint.
Problem: Show PUS.

Exercises:
(1) If A={4, 5, 6, 7} and B={5, 6, 7, 9, 3 }, use Venn

Diagrams to show A U B.
(2) Using the sets given in exercise 1 use Venn

Diagrams to show that A cE B.
(3) If D={a, b, c, 0 and H = {f, c, a, b} use Venn Diagrams

to show D=1-1
(4) Venn Diagrams are described as a means of veri-

fication but not a method of proof, Can you reason
why this is so?

Exercises (Answers):
(1) Use Venn Diagrams to show AU B

(2) If A were a proper subset of B the Venn Diagram
would place the set representing A inside the Venn
Diagram B, but this is impossible since A contains
some elements not in B.
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(3) D = H The circles representing D and H are
congruent.

(4) Venn Diagrams are illustrations which show set
operations and relations for specific cases
rather than for generalizations. A proof is
independent of specific cases and concerns
itself with generalizations.

VENN DIAGRAMS AND
SET INTERSECTION Venn Diagrams can be used to show the opera-

tion of set intersection. To show intersection we
will place the same three conditions on the sets as
we did in showing set union.

(1) Condition: Z C F. Problem: Z
(2) Condition: W and L contain some elements in

common. Problem: Wr$ L
(3) Condition: P and S are Disjoint. Problem: P n S

Example (I):
F

Example (2):

Example (3):

z. F

The representation of P S may cause some confusion. It will help to
consider the following questions:

(1) What is the relationship of P and S?
(2) What is the intersection of two disjoint sets?



VENN DIAGRAMS AND
COMPLEMENTATION Both the complement and relative complement

operation can be shown vividly and easily through
the use of Venn Diagrams.

Example: Consider a universal set U and some proper subset
A. By definition, the complement of A with respect to
U (in symbols, .--A) equals to the set of all elements in
U that are not in A. Using Venn Diagrams:

pilliq

iisudia

VENN DIAGRAMS AND
RELATIVE COMPLEMENT Consider a universal set U and two proper

subsets ox U, A and B. By definition, the relative
complement of A with respect to B is the set of all
elements in B which are not in A. Consider the same
conditions placed on the subsets that were placed on
the subsets used in showing union and intersection.

(1) Condition: AC B. Problem: to find B - A
(2) Condition: A and B share some elements.

Problem: to find B - A
(3) Condition: A and B are disjoint.

Problem: to find B - A

Example (1): If A B, then B - A would be pictured as shown:
A A

Example (2): If A shares some elements with B, then B - A
would be as pictured below:

6-A

Example (3): If A and B are Disjoint, then B - A is represented
as the following picture:

B- A
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4. Using the sets given in problem (3), complete the following:

{1, 3, 5, 7, 9)
C = {2, 4, 6, 8) D {3, 6, 9) E = {5, 10). Tell if the following are
true or false and explain your answer.

a) ACU f) B D

b) CCU g) D44.11

c) CCU h) ECACU

a) A U C =
b) NE =
c) (D B) U=
d) 11U=
e) E x D =

d) Uc U i) t CU
e) U SOU CC_ 0

4. Using the sets given in problem (3), complete the following:
f) U =

g) (Auc)n
h) (A B) (\U =
1) C - A =
3) A - C

a) A U C =
b) NE =
c) (D B) U=
d) 11U=
e) E x D =

5. Using the sets given in problem (3), verify that the following are true:

a) An c = C 1) AU 0
b) AU D= A g) ArI(1= 0
c) (An C) U A = A h) AUU=U
d) A (B C) = (A A B) t..) (A II C)

i) ArIU = A
3) Dx0 =0

e) (AU D) t,1 E = A U (DUE)

f) U =

g) (Auc)n
h) (A B) (\U =
1) C - A =
3) A - C
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6. Using Venn Diagrams shade the area indicated by the following
operations:

L.......eNoIMIqOaIMPNI.Mr.1.pPl

CA-13 MA

(EnD)Lic

_....................

.-..-4141u181)

pn

(EuC) fl (coo

SET THEORY (ASSIGNMENT ANSWERS)

1. a) Not well-defined b) Well-defined (could be argumentative)
c) Well-defined d) Well-defined (Empty set)

Z. a) {0, 7, 14, 21, 28, .... b) The set of all odd natural numbers less
than 10.

c) B = {2, 3,4}
3. a) True. A is a proper subset of U

b) True. C is a subset of U
c) True. C is also a proper subset of U
d) True. U is a subset of U.
e) True. U is not a proper subset of U
f) True. B does not equal D
g) True. D is not a proper subset of B
h) True. E is a proper subset of A and A is a proper subset of U.
i) True. The Empty Set by definition is a proper subset of every set.
j) True. Every set is a subset of itself.
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4. a) {1, 2, 3, .. . 10}
b) {1, 2, 3, 4, 6, 7, 8, 9, 11, . }
c) {3,9}
d) 0

f) U
g)
h) {1, 2, 3, 4,
i)
j) {1, 3, 5, 7,

e) {(5, 3),(5, 6), (5, 9), (10, 3), (10, 6), (10, 9))

5. a) The element of C are in both A and G
b) D is a subset of A
c) A (IC = C and C VA = A
d ) A r)(B L/C) = A n{1, 2, , 8, 0}

= {1, 2, 8, 9}
(A nB) ti (A n C) = B VC

= {1, 2, . , 8, 9}
A el (B C) = (A el B) tit (An C)

e) (AU D)UE=AUE=A
A V (D UE) = A U { 3, 5, 6, 9, 10} = A

(A VD) UE= Au (D t./ E)
f) Since AU 0 = A,

AV 0 is true.
g) Since there is no common element in both A and 0,

A ri = 0 is true.
h) Every element of U is in either A or U.
1) Since every element in A is also in U, Ana = A is true.
j) There is no element with which to pair the elements of D,

therefore, the answer must be the empty set.

6.

Pn S
U

14.
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(E AD) U C (E U C) 0 (C U D)
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THE MATHEMATICAL SENTENCE

In order to unify mathematics and correlate it with the logic of English,a term has been introduced which has gained more than a little accep-tance by mathematics educators.

MATHEMATICAL SENTENCE A mathematical sentence is a propositionrelating two mathematical expressions. "2x = 6" is amathematical sentence; because it has a subject (2x),and object (6), and a predicate (=).

Exercises: Locate the subject, predicate, and object in the follow-ing mathematical sentences:
x - 9 = 14
3x < 4
4y> 19
7x + 4y = 15

(1)

(2)
(3)
(4)

That the term mathematical sentence is an innovation can be clearly seen,since formerly "Zx = 6" would be classified solely as an equation. 2x = 6is still an equation, but the term sentence has been invented, because itis more readily understood by the beginning student of mathematics. Also,the use of mathematical sentence is a unifying idea in that it includesseveral relations formerly titled by a series of different terminology.
OPEN SENTENCE AND CLOSED SENTENCE

In mathematics when we cannot adjudge the truth of a mathe-matical sentence, the mathematical sentence is called anpen......SeLSentence.
"x = 7" is an open sentence. If the placeholder "x" is replaced bythe name of some natural number, the sentence is no longer open;it becomes a Closed Sentence.

TRUE STATEMENT AND FALSE STATEMENTIf a closed sentence is true, it is called a True Statement. If theclosed sentence is untrue, it is called a False Statement.
Example: x = 7 Open Sentence

Replace the placeholder "x" by the natural number "6,"Then the result obtained is 6 = 7.
Now the sentence is a Closed Sentence.
However, since 6 = 7 is not true, we have a False Statement.Replace the placeholder by the natural number "7."Then the result obtained is 7 = 7.
Thus we have a Closed Sentence and a True Statement.Our objective will be to find all eligible replacements of the placeholderwhich make the sentence true. The set of all such replacements iscalled the solution set of the open sentence.
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MATHEMATICAL REASONING

The history of the development of mathematics is a human story. Itis a story of mistakes, blunders, and blind prejudice. It seems that
the numbers 1, 2, 3, etc. are as obvious as night and day; and yet, the
understanding of the concept of number took thousands of years. Evenafter man had formulated in his own mind the concept of number, ittook him another thousand years to invent a symbol or numeral to ex-
press this idea of number; i, e., "1", "2", etc.

Today mathematics has reached a high level of development. Part ofthis development is due to that quality of mathematics called "flexi-bility." There is a freedom in mathematics which can be found in noother science. This freedom is a result of the total objectivity of
mathematics.

Bertrand Russell, a contemporary philosopher-mathematician, hasgiven this definition of mathematics: Mathematics may be defined
as the subject in which we never know what we are talking about, norwhether what we are saying is true." Although this definition seemsa bit ridiculous, Mr. Russell uses it to make a very important point;
MATHEMATICS IS AN INVENTION, NOT A DISCOVERY.

In mathematics we are no more bound to the idea that 5 + 6 = II than
we are bound to the fact that we must live in only one house all of ourlives.

Because mathematics is an invention, we may alter or change this in-
vention any time we wish; just as the inventor changes from the candleas a form of illumination to the light bulb. The idea which concernsthe mathematician is, "How do I start ?" or, "What definitions do Imake ?" If the mathematician starts with the definition; "The moon ismade of green cheese with a surface of peaches and cream," he cansolve the following problems:

Question: "Is the moon good to eat?"
Answer: "Yes, if you like green cheese topped with peaches and

cream It

Question: "Could we construct buildings with material found on
the moon?"

Answer: "No (unless we wanted an edible, but very unstable
building)."

The point this example stresses is, in mathematics certain defini-tions are stated. From these definitions any action may be per-formed as long as the action or operation agrees with the definitions.
In this workshop we are going to invent some mathematical systems.We will proceed much as the inventor proceeds.
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First, we need Undefined. Terms. These are ideas we wish to use,
but cannot explain; just as the inventor, Thomas Edison, used elec-
tricity for his incandescent lamp, yet Mr. Edison could not explain
electricity.
Examples of undefined terms would be the notions of "numbers" or,
in geometry, the notion of a "point."
Next, these undefined terms are used to construct Definitions, just
as the inventor uses electricity (which he cannot define) to make
definitions; i, e. , the definition of Voltage, Coulomb, Ampere, etc.
Using these definitions, rules or axioms will be stated that must be
followed, just as Mr. Edison used rules or axioms such as, Voltage
divided by Resistance equals current.
Finally, we will use these undefined terms, definitions, and axioms
to solve problems or establish theorems, just as Mr. Edison used
his light bulb to solve the problem of lighting the world in a better
and more efficient manner.
Just as inventors through the years improved on Thomas Edison' s
light bulb to meet new responsibilities and challenges, we will im-
prove or extend our mathematical system, so that it will handle more
complex problem- solving situations.

Remember - To invent a mathematical system, we use a very definite
approach (sometimes called the Axiomatic Approach).
We need: (1) Undefined Terms

(2) Definitions (Based on the undefined terms)
(3) Axioms (Rules which must be followed)
(4) Theorems (conclusions derived from (1), (2),

and (3) with the use of logic).
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UNIT II

THE NATURAL NUMBERS

INTRODUCTORY DISCUSSION The familiar numbers which are used
for counting are called, by mathematicians, natural
numbers. Although it is customary to begin counting
with the number one, in this workshop we will consider
zero to be the first (smallest) natural number. It must
be noted that there is considerable lack of agreement
among mathematicians as to whether zero should be in-
cluded in the set of natural numbers.

BUILDING THE SET OF NATURAL NUMBERS To "build" the set of
natural numbers we will need some mathematical "tools"
which will be discussed herein:

RELATIONS In the physical world objects are associated by
relations such as "is the fathers of, " "is older than,"
"is next to" and "is between" to name a few. In the set
of natural numbers we will use the following relations:

EQUALITY This relation is denoted by the symbol ".="
which is read "is equal to." The symbol "=" placed
between two mathematical names indicates that both
names refer to the exact same mathematical object.
For example, if a and b are natural numbers, a = b
indicates that a and b are the exact same number.
In the current approach to the study of mathematics
a careful distinction is made between "number" and
"numeral." A number is a purely mental conceat
which is governed by various mathematical laws. A
numeral is a name for a number and in its written
form (as distinguished from spoken symbols) can be
combined with other mathematical symbols and
manipulated to convey mathematical ideas.

INEQUALITY For any two natural numbers a and b,
"a b" means that a is not equal to b. It should
be noted that there is no way of determining, from
such an expression, the relative sizes of the two
numbers. All other inequality relations do indicate
the relative sizes of numbers.
a>b: "a is greater (larger) than b"
a<b: "a is less (smaller) than b"
a>b: "a is greater than or equal, to b"
a<b: "a is less than or equal to be"
a '/b: "a is not greater than b"
a4b: "a is not less than b"
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OPERATIONS All mathematical objects (of which number is
just one type) are mental concepts and are dealt with by
means of mental concepts. In the world of numbers, an
operation is a process which generates -iumbers from
other numbers. A binary operation generates numbers
from two numbers, while a unary operation generates
numbers from one number. In many current mathematics
programs an operation is described as a process in which
(for a binary operation) a pair of numbers is "mapped onto"
(associated with) a unique number. A mapping of this type
is sometimes indicated in the following way:

+(l,2), 3
"Under the operation of addition the pair 1, 2 is associated
with, and only with, the number three."

THE SET OF NATURAL NUMBERS Each natural number is associated
with a particular set (the type of objects in the set is imma-
terial) and is said to denote the cardinalityof that set. A
natural number used in this way is called a cardinal number.

NATURAL NUMBER
Zero'

One

Two

If the members of two different sets can be put into a one to
one correspondence so that each member of one set has a
unique mate in the other set, the two sets are said to have
the same cardinality. In attempting to make a one to one
correspondence between the members of two different sets,
if one set contains a single member which has no mate in
the other set, the set which contains the "extra" member is
said to be "one larger" than the other set. The number
associated with the larger set is "one more" than the number
associated with the smaller set.
The set of natural numbers is an ordered set. Each number,
beginning with zero, has a unique successor which is one
more. If we let N represent the set of natural numbers,

N = { 0 , 0+1, (0+1)+1 and so on increasing by one without
end}

COUNTING Counting is a process in which the members of a set
are put into a one to one correspondence with an ordered

sequence of the natural numbers beginning with the number one.
The last number in the sequence denotes the cardinality of that
set. Any set whose members can be put into such a correspon-
dence with the natural numbers is called a countable set. This
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has no relation to the physical possibility of carry-
ing out such a task (as for example with all the grains
of sand on all the beaches on earth), but depends upon
whether or not the set contains discrete objects which
can be "lined up" in some order. If the counting comes
to an end the set is said to be demne3y_.b1 finite ; and
if the counting never ends, the set is said to be
denumerabiy infinite.
The set of natural numbers is denumerably
because it can be put into a one to one correspondence
with itself without end. It is interesting to note that a
denumerably infinite set can have many proper subsets
which are also denumerably infinite; e. g. , the set of
even numbers and the set of odd numbers are denumer-
41y infinite; and they are proper subsets of the set of
natural numbers.
We will use the letter n, to the left of a symbol desig-
nating a particular set, to indicate the number of
elements in that set. For example .

n {a,b } =2
If two sets, A and B, contain exactly the same members
we indicate this by the expression "A = B." If two sets,
A and B, contain the same number of members, we in-
dicate this by the expression"A B" which means
"A is equivalent to B." Sets which have the same cardi-
nality are said to be equivalent sets.

EXERCISES:
aj n O =
b) n{0}
c) n {2 +3} =

d) n{2,3}=
e) n{(2, 3) }
f) n{ =

2) For two sets, X and Y, if X Y is X = Y ?
3) For two sets, R and S, if R = S is ?

4) If a b then what must be true of b?
5) If a it b then what must be true of b?

ANSWERS TO EXERCISES:
1) a) 0; b) 1; c) 1 because 2+3 is a name for

number, Ave. d) 2; e) 1 because (2, 3) is a single
element in the form of an ordered pair; f) 1 because
the set contains one element which itself is a set;
the fact that it is the empty set does not affect the
answer which would be the same if a set were to con-
tain one non-empty set as its only member; e. g.,
n{ {. a, b, c} } = 1.

- continued
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2) Not necessarily. It is possible, but there is no way
of telling from the given information.

3) Yes. If two different sets have exactly the same mem-
bers, then they must have exactly the same number of
members.

4) b > a
5) b> a

THE SYSTEM OF NATURAL NUMBERS Thus far we have discussed theM.10Mwmei=1.10=0,

natural numbers as a set of related mathematical elements.
Now we will examine this set of numbers with regard to the
operations which are defined on it, and in doing so we will be
considering the natural numbers as a mathematical system.

MATHEMATICAL SYSTEM A mathematical system consists of a
set of elements and at least one operation defined on that set.
The results of combining elements of a set according to the
defined operations are determined by laws which are either
postulated (assumed) or which are derived from existing
definitions and assumptions. These laws are often called
properties.
In general it is educationally profitable for students to be en-
couraged, wherever possible, to discover or to postulate
various properties as a result of their number experiences.

PROPERTIES OF THE NATURAL NUMBERS UNDER ADDITION

In the following discussion "N" will denote the set of natural numbers
and all lower case letters will denote natural numbers.

I) For any a and b, a + b 6 N. This is known as the closure
pro ei-a....SLofaciclition, and means that the result of adding any
two natural numbers is a natural number. The set of natural
numbers is said to be closed under the operation of addition;
because it is impossible to generate, by addition, a number
which is not a member of the set.

2) For any a and b, a + b = b + a. This known as a commuta-
Ityl_proproperty and means that the sum of two
natural numbers is unaffected by the order in which the num-
bers are combined. In future illustrations we will refer to
this property as C.P.A.

3) For any a, b and c, a + (b + c) = (a + b) + c. This is known as
the associative property of addition and means that the sum
of three natural numbers is unaffected by the grouping of the
numbers. Since addition is a binary operation only two
natural numbers can be combined at one time. We will refer
to this property as A.P.A.

4) For any a, a + p = a. The number zero is called the identi
element for addition in the set of natural numbers, am ining
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any natural number with zero by the operation of addition
produces that identical number. Stated in another way,
"if a + x = a then x= 0."

PROPERTIES OF EQUALITY
L REFLEXIVE PROPERTY OF EQUALITY a = a

Any natural number is equal to itself.
II. SYMMETRIC PROPERTY OF EQUALITY If a = b, then b =.4 a

III. TRANSITIVE PROPERTY OF EQUALITY If a = b and if b = c,
then a = c.

IV. ADDITION PROPERTY OF EQUALITY If a = b, then a+c=b+c.

SUBSTITUTION PROPERTY
Different names for the same mathematical object can be interchanged
in mathematical expressions without changing the meaning of those
expressions.
SUBTRACTION IN THE SET OF NATURAL iIUMBERS We will define

subtraction in reference to addition as follows:
If a + b = c, then b = c - a

If "b" is replaced in the first expression by its equivalent "c -.a" theresult is a + - a1r = c. This leads to the following definition: "c - ais the number which when added to a produces c." By the same reason-
ing if a + b = c then a = c b and c b is the number which when added
to b produces c.
In the above context c > a and c > b since otherwise the symbols "c - a"and "c b" would have no meaning in the set of natural numbers'. Theset of natural numbers is not closed under the operation of subtraction;e. g., 2 - 3 is not a natural number.
GENERAL DEFINITION OF SUBTRACTION IN THE SET OF NATURAL
NUMBERS a x = b 44==, a = b + x for x <a
The definition of subtraction can be combined with the identity element
for addition to produce the following corollary:

n n = 0
Proof: Let n n = x

= x + n Definition of subtraction
x

DEFINITION OF GREATER THAN If a > b, there exists some x such that

*

b + x = a; where x 0.
AN ADDITION PROPERTY OF ">" a > b --) a +c>b+ c

Proof: a > b Given

a + c = (b + x) + c
a = b + x Definition of >

Addition property of equality
- continued

= 0 Definition of identity element for
addition

n 1+1, Transitive property of equality

THE "GREATER THAN" RELATION
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a+c=b+(x+c)A.P.A.
a+c=b+(c+x.)C.P.A.
a + c = (b + c ) + x A. P. A.
a + c > b + c Definition of >

*The converse will be proved as an exercise.
THE TRANSITIVE PROPERTY OF ">" If a > b and if b > c, then a > c

Proof: a > b Given
a = b + x Definition of
b > c Given
b = c + y Definition of >

a = (c + y) + x Substitution for "b" in step 2
a= c+ (y + x) A. P. A.
Y +x EN Closure property of addition
a > c Definition of >

PROPERTIES OF THE NATURAL NUMBERS UNDER MULTIPLICATION

Multiplication is a binary operation which associates each pair of natural
numbers with a unique number. The two natural numbers which comprise
the pair are called factors, and the unique number with which they are
associated is called the product of the two factors. A "dot" will be used
to denote multiplication when two numerals are used as in "2 3."
Juxtaposing two letters or a numeral followed by letter denotes multi-
plication as in "ab" (1. e. , a b) and "5a" (i. e. , 5 a). A numeral or
letter (or combination of both) to the left of a parenthesized expression
also indicates multiplication as in "a (bc)" which means a (b c).

1) ab E N This is called the closure yroperty of multiplication which
means that the product of any two natural numbers is also
a natural number.

2) ab = ba This is called the commutative property of multiplication
which means that the product of two natural numbers is
unaffected by the order in which the numbers are combined.
We will refer to this property as C. P. M.

3) a(bc) = (ab)c This is called the associative property of multiplication
and means that the product of three natural numbers is un-
affected by the trouping, of the numbers. We will refer to
this property as A. P. M.

4) la = a This is called the multiplication property of 1. The number 1
is called the identity element for multiplication in the set of
natural numbers. Combining 1 with any natural number by
the operation of multiplication produces that identical
number.

A NEW PROPERTY Thus far we have a set of 4 properties relating to
addition with natural numbers and a set of 4 properties
relating to multiplication with natural numbers. Now we
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will introduce a property which enables us to combine
addition with. multiplication as follows:

a(b + c) =a b + a c (or simply ab + ac)
This property is called the distributive property of multi -
p_psatiaddition. According to the symmetric
property of equality it is also true that ab + ac = a(b + c).
We can also assume, for convenience, that (b + c) a
ba + ca and ba + ca = (b + c)a. A study of number systems
which are beyond the scope of this workshop will reveal
the fact that the distributive property governs addition
throughout the set of real and complex numbers. The fol-
lowing illustration will show that the familiar multiplica-
tion algorithm learned in elementary school is an applica-
tion of the distributive property.
23 x 32 = (20+3)(30+2) = 20(30+2) + 3(30+2)

= 20 32 + 3 32
= 640 + '96

736
Throughout the study of elementary mathematics an under-
standing of the distributive property is an indispensable
tool for the mathematics student. Consider the following
case in point. A beginning algebra student can simply be
told that for any number, n, n + n = 2n or he can be
helped to arrive at this coxislusion by applying the dis-
tributive property in conjunction with some other
accepted properties as follows:

a = la Identity element for multiplication
la + la = (1 + 1)a Distributive property

= 2 a Substitution
= 2a Definition o1 a b

We will refer to this property as D. P. M. A.
An expression such as 2 3+ 4 is ambiguous unless the
order in which the operations are to be done is specified.
Asking a group of students to simplify such an expression
and seeing the multiplicity of answers which result will
dramatize the need for a rule to cover such cases. The
rule in question is referred to as the order of operations
and reads as follows:
In a series of operations which involve any combination
of addition, subtraction, multiplication, and division, all
multiplications and divisions are to be done first. See
examples shown:
a) 2 - 3 + 4 - 5 = 6 + 4 - 5 = 10 - 5 = 5

b) 2 +3.4- 5 =2 +12- 5= 14 -5 =9
c) 2 3 + 4 5 = 6 + 20 = 2 6



Once the rule has been stated, parenthesis are needed
only to change the accepted order of operations, e.g.,
(3 4) 2 to show that addition comes first.
It should be noted that when multiplication and division
come in immediate succession, the order in which they
are performed does not affect the result.

6) + 3
3) 2

The same reasoning applies to addition and subtraction.
WARNING: This does not mean that division is associa-
tive, nor does it mean that subtraction is associative.
a + (b + c) 4 (a b) + c
a - (b c) (a - b) c

THE MULTIPLICATION PROPERTY OF EQUALITY If a = b, then
ac = bc.
*The converse of this property will be discussed lirther
along in this section.

THE MULTIPLICATION PROPERTY OF ZERO n 0 = 0
Proof: 0 + 0 = 0 Identity element for addition

n(0 + 0) = n 0 Multiplication property of "
n 0 -i- n 0 = n 0 D. P. M. A.

n 0 = 0 Definition of identity element for
addition.

Remember that according to the definition of the identity element for
addition if a + x = a, then x = 0. In the above example a = aO and
x = n..0; and since their sum is 0, n 0 must be 0.
DIVISION IN THE SET OF NATURAL NU3S/BERS We will define division
in terms of multiplication as follows:

If c + b = a, then c = a b ("+" is read "divided by").
If "a" is replaced in the second sentence above by its equivalent
"c + b", the result is c = c + b b. This leads to the following
definition: "c b is the number which when multiplied by b
produces c,"

DIVISION PROPERTIES OF ZERO
Case I: 0 + n where n # 0

If 0 + n = x then x n = 0 Definition of division

2 (6 + 3) = (2
12 (3 2) = (12

26.

Either n. = 0 or x = 0 Multiplication property of zero
n 0 Given

Therefore x = 0
Zero divided by any non-zero natural number equals zero.

Case II: n + 0 where n 0
If n + 0 = x then x 0 = n Definition of division
x 0 = 0 Multiplication property of zero.

n 0 Given
In this case "n + is a meaningless symbol because no
natural number times zero will produce a non-zero product.
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Case III: 0 + 0
If 0 + 0 = x then x 0 = 0 Definition of division

But Any, x 0 = 0 Multiplication property of zero.
In this case "0 0" is a meaningless symbol because there is no
unique number which can be associated with the number pair (0, 0)
under the operation of division.

SUMMARY: Division by zero is undefined in the set of natural numbers.

MORE ABOUT THE MULTIPLICATION PROPERTY OF EQUALITY:
It was stated earlier that if a = b, then ac bc. Now let us examine the
converse of this statement, namely, if ac = bc, then a = b. Consider the
statement 2 0 = 3 0 which is certainly true according to the properties
which have been accepted so far. However, if we accept, without reserva-
tion, the converse of the previously stated multiplication property of
equality we would be forced to accept the statement 2 = 3, which is
obviously nonsensical.
SUMMARY: If a = 13, then ac = bc.

If ac = bc and c 0, then a = b.

SOLUTION SETS OF OPEN SENTENCES IN THE SET OF NATURAL
NUMBERS

DEFINITION OF SOLUTION SET The solution set of an open sentence is
the set of all members of a specified universal set whose
names can be used to make true statements when substituted
for the variables in the open sentence.

For any b < a there exists an x such that b + x A. a. With the properties
which have been established to this point, the student has sufficient tools
to find the solution set of some open sentence of the form nx + b = c in
the set of natural numbers. See the following example:

U N Find the solution set of Zx + 3 = 11
2x + 3 = 11 Given
2x = 11 - 3 Definition of Subtraction
2x = 8 Substitution
x = 8 + 2 Definition of division

4 Substitution
According to one school of thought at this point only the first of two
large steps toward finding the solution set has been completed, namely
that of eliminating non-possible members of the solution set. The second
step consists of testing the possible candidate for membership in the
solution set by substituting its name for the variable in the original
sentence. If a true statement results for each substitution, the solution
set has been found.

2 4 + 3 = 11
8 + 3 = 11

Since 4 was the only candidate, we can indicate the solution set as
follows: The solution set is (4).

- continued
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This two step procedure corresponds to the logical process of examining
a true statement and its converse.

Statement: If Zx + 3 = 11, then x = 4.
Converse: If x = 4, then 2x + 3 = 11.

According to a second school of thought on this matter the second step
is unnecessary if all sentences subsequent to the first sentence are ob-
tained by means which ensure that these sentences Are 291......tivalent to the
original sentence.
It must be noted that the student will be unable, at this point, to find
solution sets of certain variations of nx. + b = c if he is restricted to
only those properties which have been established. Consider the follow-
ing example:

U = N Find the solution set of 5x = 2x + 9
5x = 2x + 9 Given

5x - Zx = 9 Definition of subtraction
Now at this point the student knows intuitively that 5x - 2x = 3x; however,
since distributivity of multiplication over subtraction .has not been de-
fined, the above sentence cannot be simplified further, using only the
available properties. In the next chapter we will see that the operation
of subtraction can be dispensed with so that a situation such as .the one
above is no obstacle.
EXERCISES:

1) In each of the following exercises you may use any of the proper-
ties which have been discussed.

a) Prove that subtraction is not commutative
b) Prove that Zn + 3n = 5n

2) Use the distributive property to write each indicated sum as a
product.
a) 12 + 15; b) a + ab; c) 9ab + 6b ; d) ab + ac + bd + cd

3) 3) Use the distributive property to write each indicated product as
a sum.

2(a + 3) ; b) a(2b + 3c) ; c) 5a.(2b + 3c) ; d) b(2c + 1)
4) Why can't the distributive property be used to write the sum

15 + 16 as an indicated product?
5) Give numerical examples to show that

a) The set of natural numbers is not closed for subtraction
b) Subtraction is not associative
c) Division is not commutative
d) Division is not associative
e) The set of natural numbers is not closed for division

6) Provethata+c>b+c----)a>b
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ANSWERS TO EXERCISES:
la) To prove that a - b = b - a is not a true sentence; we need to

find some replacements for a and b, which will make it false.
Since 3 - 2 = 2 - 3 is a false sentence, the generalization
a-b=b-a is not a true sentence for all a N and b N.

lb) 2n + 3n = (2 + 3)n Distributive property
= 5 n Substitution
= 5n Symbolism for product

2) a) 3(4 + 5) ; b) a(1 + b) ; c) 3b(3a + 2) ; a(b + c) + d(b + c)
= (a + d) (b + c)

3) a) 2a + 6 ; b) tab + 3 ac ; c) 10ab + l5ac ; d) 2bc + b
4) Because 15 and 16 have no common divisor other than 1
5) a) 4 - 5 ; b) 9 - (5 - 3) (9 - 5) - 3

9 - 2 4 - 3
1

c) 4 + 2 + 4 ; d ) 12 + (6 + 2) 7/ (12 6) + 2
2 2+ 4 12 + 3 + 2

4

e) 2 + 3

6) Ifa+c>b+c thena+c=(b+c)+x
a + c = b + (c + x)
a + c = b + (x + c)
a + c = (b + x) + c

a = b + x
a > b

UNIT III

Definition of >
A. P. A.
C. P. A.
A. P. A.

Addition axiom of =
Definition of >

THE INTEGERS

PRELIMINARY DISCUSSION It was stated in the section on natural
numbers that there is a non-empty solution set in the set of
natural numbers for every open sentence b + x = a where
b S. a, Also, there is an infinitude of such open sentences
where b > a; e. g., 2 + x = 1. There are no solutions for such
sentences in the set of natural numbers, so a set which will
provide solutions had to be invented. This new set of numbers
is called the set of integers, and we are going to show several
different methods which can be used to develop the system of
integers with junior high school classes.

THE SET OF INTEGERS We can use the idea of the Farenheit ther-
mometer to develop the set of integers. The numbers repre-
sented on a thermometer constitute a "number line" on which
the number zero is arbitrarily chosen to separate the line into
three sets: zero, numbers above zero, and numbers below zero.
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If we designate the numbers above zero ".positive" and the nurt.x-

bers below zero "negative," we can call the union of the three
sets, the set of i2..tlaers.

."4, -3, 2, U {0} U {4 1, 42, 43,44 . . } = {In teger
Integers are sometimes called directed numbers. Each integer
has magnitude and, with the exception of zero, indicates one of
two directions, positive or negative. The order of magnitude is
from negative through zero to positive. Thus "1 is one less than
zero, -2 is one less than-1, etc. Because of their behavior, the
non-negative integers make up a set which is said to be isomorphic
to the set of natural numbers. In practice the integer 4-1, for
example, is written as "1"; however, it must be emphasized that +1

and 1 belong to two different sets. We don't say "positive one"
when we count, nor does the word "one" indicate direction.

SUMMARY: {Negative Integers} U {Zero Integer} U {Positive Integers} =
{Integer s}

THE SYSTEM OF INTEGERS Depending upon the caliber of the class,
operations in the set of integers can be developed by inductive
methods which make use of demonstrations and appeal to the
intuition, or an axiomatic approach can be used.

THE NUMBER LINE APPROACH TO THE ADDITION OF INTEGERS
.

"4 -2 -; +i. +2 +3 +4

Rules: Moving k units to the right on the "integer line" denotes
addition of the integer "positive k".
Moving k units to the left on the integer line denotes
addition of the integer "negative k".

By applying the above two rules integer sums can be easily determined.
A more detailed discussion of this method as used to illustrate sub-
traction, multiplication and division can be found in an article by L. H.
Coon in the Arithmetic Teacher, Vol. 13, Number 3, pages 213-217.
THE NOMOGRAPH APPROACH TO ADDITION AND SUBTRACTION

This method relies for its effectiveness upon the students under-
standing of the definition of addition-subtraction for any numbers,
namely

If a + b = c then a = c b and b = c - a
- continued



The nomograph consists of three number scales evenly spaced and num-
bered as in the illustration below:

a c
+4

.
+8

.
+7

+3 . +6 .
+5

4- 2 .
+4

.
+3

+1 +2

+1 .

b
. +4

+3

w
+2

2. 4. . 2

5

-3 . . "3
-7 .

4. -8. . "4

The sum a + b is found by connecting the appropriate numerals in the "a"
and "b" scales with a string and reading the result where the string inter-
sects the "c" scale. In the same way, the difference c b can be found
as a projection on the "a" scale and c - a can be found as a projection on
the "b" scale. The disadvantage of the nomograph is that logarithmic
spacing of the numerals is necessary in order to illustrate multiplication
and division.

MORE METHODS FOR DERIVING INTEGER PROPERTIES
USING NATURAL NUMBER PROPERTIES AND
SPECIFIC NUMERICAL EXAMPLES From the above heading, it can be
seen that this is an inductive method since mathematical generalizations
of an affirmative nature cannot be reached by the observation of specific
cases*. Of course one counter-example is sufficient to reach a generali-
zation of a negative nature; e. g., 2 - 3 is sufficient reason to make the
statement that the set of natural numbers is not closed under the opera-
tion of subtraction.
* In number theory a form of logical reasoning called mathematical in-
duction is used.ItINOIMPO.

In using this method we will make the following definitions:
Definition 1: For each integer, a, there is another integer called the

negative of a or (the aposite of a);
e. g., -1 is the opposite of +1, +2 is the opposite of '2 etc

Definition 2: For any integer, a, a + 'a = 0. "a is called the additive
inverse of Ja-

e. g. , + +1 = 0, +2 + -2 = 0 etc.
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Many texts distinguish typographically between the operation of addition
and the prefix "positive" by positioning the symbol "+" as is done in the
example which accompanies definition (2). In such texts the same
typographical device is used for the operation of subtraction and the pre-
fix "negative" with respect to the symbol "-".
Exaz_ r221s1.: Find the simplest name for 5 +

Let 5 + -2 x
5 +( 2 + 2) = x + 2 Addition axiom of = and A. P. A.
5 + 0 = x + 2 Substitution according to the definition

of additive inverse
5 = x + 2 Identity element for addition
5 - 2 = x Definition of subtraction

3 = x Substitution
x = 3 Symmetric property of =

5 + -2 = 3 Transitive property of =
3 = 5 - 2 Substitution

5 + -2 = 5 - 2 Transitive property of =

It is to be hoped that the students will, through the use of hints and sugges-
tions, be encouraged to derive the above result, as well as those to follow,
for themselves. In this way the derived properties will be accepted as re-
sults which follow in a perfectly logical manner from the original assump-
tions and not as rules which are arbitrarily handed down for use.

AN ALTERNATE PROCEDURE FOR EXAMPLE I:
5 + -2 = + 2) + -2 Of course this step simply makes use of

the substitution principle. Since it pro-
vides the key to this particular procedure
ample time should be allowed for the stu-
dents to think of this step themselves.

= 3 + (2 + -2) A. P. A.
= 3 + 0 Substitution
= 3 Identity element for addition

3 = 5 - 2 Substitution
5 + -2 = 5 2 Transitive property of

This and other examples will lead to the assumption "for a, b>0 and a > b
a + "b = a - b".

Example 2: Find the simplest name for -3 +-2
Let -3 +- = x
-3 + (- 2+ 2) = x + 2 Addition axiom of = and A. P. A.
-3 + 0 = x + 2 Additive inverse
"3 = x + 2 Identity element for addition
-3 + 3 = x + (2+3) Addition axiom of = and A. P. A.

O = x + 5 Substitution
0 + "5 = x + (5+ "5) Addition axiom of = and A. P. A.

"5 = x + 0 Substitution
-5 = x Identity element for addition
x = -5 Symmetric property of =

-3 + = -5 Transitive property of =
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By definition, -5 means "(5); i. e. -(4 + 1), -(3 + 2) etc. This will lead
to the assumption "for a, b > 0, -a + -b = + b)".
Example 3: Find the simplest name for -5 + 2

Substitution according to the previous
example
A. P. A.

"5 + 2 =

=
=

(-3 + -2)

-3 + ( -2
+ 0

+ 2

+ 2)
Additive inverse

= -3 Identity element for addition
= -(5 - 2)

This leads to the assumption "for apb > 0 and a > b, -a + b = -(b a)".
Example 4: Find the simplest name for 2 - 5

Let 2 - 5 = x
2 = x + 5 Definition of subtraction
2 + -2 = x + (5 + -2) Addition axiom of = and A. P. A.

0 x + 3 Additive inverse and substitution
according to result in Example 1.

0 + -3 = x + (3 + -3) Addition axiom of =
"3 = x + 0 Identity element for addition and

additive inverse
"3 = x Identity element for addition
x.= -3 Symmetric property of =

2 - 5 = ""3 Transitive property of =
-3= 2 + -5 Result in Example 3

2 - 5 = 2 + -5 Transitive property of =
It will be left to the reader as an exercise to verify that -2 - 5 = -2 + -5.
This result combined with the results from Examples 1, 3, and 4 can be
stated as the single assumption.

For any integers a and b, a + = a - b
In the next section it will be seen that this result can be proved for all
cases in one series of steps.
Example 5: Find the simplest name for 2 - -5

Let 2 - -5 =
2 = x + -5
2 = x 5

2 -I- 5 = x
7 =x
x = 7

Z -5 = 7
7 = 2 + 5

2 - "5 = 2 + 5

Definition of subtraction
Result of previous examples
Definition .of subtraction
Substitution
Symmetric property of =
Transitive property of =
Substitution
Transitive property of =

It will be left to the reader as an exercise to verify that -2 - = + 5.
These and other examples lead to the assumption "a - -b = a + b for any
integers a and b".



Exar,e 6: Find the simplest name for 2 -3
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-3 + 3 = 0 Definition of additive inverse
2("3 + 3) = 2 0 Multiplication axiom of
2 '3 + 2 3 = 0 D. P. M. A. and multiplication property' of 0
2 -3 -I- 6 = 0 Substitution
2 -3 + (6 + -6) = 0 + -6 Addition axiom of =

2 "3 + 0 = "6 Substitution
2 -3 = "6 Identity element fdr addition

= -(2 3)

This leads to the assumption "fo:: a,b > 0, a "b = "tab) ".

Example 7: Find the simplest name for -3 -2
'2 + 2 = 0 Definition of additive inverse

3("2 + 2) = "3 0 Multiplication axiom of =
-3 -2 + -3 = 0 D. P. M. A. and multiplication

property of 0
-3 -2 + -6 = 0 Sub stitution, and C. P. M.
'3 -2 + -6 + 6 = 0 + 6 Addition axiom of =
'3 "2 + 0 = 6 Substitution
"3 "2 = 6 Identity element for addition

= 3 2

This leads to the assumption "for a, b > 0, -a * -b = ab".
DIVISION IN THE SET OF INTEGERS The rules for division in the set
of integers can be derived readily by using the definition of division and
the results obtained in Examples 6 and 7.
Example 8: Find the simplest name for -6 + 2

If "6 then 2x = "6 Definition of division
Therefore, x is that numbeT which when multiplied by 2 produces a

product of -6
From Example 6, x must be -3.

Example 9: Find the simplest name for 6 "2
If 6 -2 = x, then-2x = 6. Definition of division

Therefore, x is that number which when multiplied by -2 produces a
product of 6.

From Example 7, x must be -3.
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ANOTHER PROPERTY OF>=4......P.I.Nwwwwalasi
In the set of natural numbers this is true: c 0 and a > b, if and only ifac > bc.

Proof: If a > b, then a = b + x Definition of >
c(a) = c(b + x) Multiplication axiom of
ac = bc + xc D. P. M. A.
ac > bc Definition of >

The converse of the above can be proved by merely reversing the stepsin a proof to be certain that the steps are indeed valid when reversed.
Now we must examine this property in the set of integers.

3 > 2 but -5(3) < -5(2)
-1 > -2 but -3(-1) < -3( -2)

As a result of the above examples we must make the following modifica-
tion when stating this property with respect to the set of integers:

a > b and c > 0, if and only if, ac > bc
The property still holds but the restriction on c is enlarged from non-zero to positive.

PROOFS OF SOME INTEGER THEOREMS
In the following proofs we will make use of the properties which apply inthe set of natural numbers plus the definition of the additive inverse.
THEOREM I: For any integers a and b, a + -b = a - b

Let a + -b = x
a +( -b + b) = x + b Addition axiom of = and A. P. A.
a + 0 = x + b Additive inverse

= x + b Identity element for additiona - b = x Definition of subtraction
x = a - b Symmetric property of =

a + -b = a - b Transitive property of =

THEOREM II: a + -b = (a t b)
Let -a + = x
-a + ( -b + b) = x + b
a + 0 = x + b

-a = x + b

Addition axiom of = and A. P. A.
Additive inverse
Identity element for addition

- a + a = x + (b + a) Addition axiom of =
0 = x + ( a + b) Additive inverse and C. P. A.

0 + (a + b) = x + (a + b) + -(a + b) Addition axiom of =
-(a + b) = x Identity element for addition and

Additive inverse
x = -(a + b) Symmetric property of =-a + -b (a + b)



THEOREM III: a - ( -b) = a + b
Let a ( -b) = x

a = x + (-b) Definition of subtraction
a = x b Theorem I
a + b = x Definition of subtraction

x = a + b Symmetric property of =
a - ( -b) = a + b Transitive property of =

THEOREM IV: -( -a) = a
-( -a) + -a = 0

0 = a + -a
-( -a) + -a = a + -a
-( -a) = a

Definition of additive inverse
Definition of additive inverse
Transitive property of =
Addition axiom of =
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THEOREM V: a( "b) = (ab)

a( -b + b) = a(0) Substitution
a( -b) + ab = 0 D. P. M. A. and multiplication property

of 0
a( -b) + {ab + -(ab)} = 0 + -(ab) Addition axiom of = and A. P. A.
a( -b) + 0 = - (ab) Additive inverse and identity element

for addition
a( -b) = -(ab)

THEOREM VI: -a( -b) = ab
a( -b + b) = -a(0) Substitution

- a( -b) + -(ab) = 0 D. P. M. A. , theorem I and multipli-
cation property of )

a( -b)+{ -(ab)+ab} = 0 + ab Addition axiom of = and A. P. A.
a( -b) + 0 = ab Additive inverse and identity element

for addition
-a( -b) = ab Identity element for addition

EXERCISES

1) Find the simplest name for each of the following numerals by making
use of the previously proved theorems:

a) -7 + 9 ; b) -13 + 4 ; c) -9 + -11 ; d) 8 + -13 ; e) 0 + -17
f) 6 - (1) ; g) -9 - 9 ; 0 - (-3) ; i) -8 - "9) ;j) -1 ("1)
k) -16 + 4 ; 1) 72 +.

2) Prove that a (b + c) = a b c

3) Prove that a (b c) = a b + c
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ANSWERS TO EXERCISES:
1) a) +2 ; b) '9 ; 20 ; d) "5 ; e) "17 ; f)+ 13 ; g) "18 ; h) +3

1) +1 ; j) 0 ; k) -4 ; 1) -8
2) Let a (b + c) = x

a = x + (c + b) Definition of subtraction and C. P. A.
a = (x + c) + b A. P. A.
a - b = x + c Definition of subtraction
a - b - c =x Definition of subtraction

x = a - b - c Symmetric property of =a-(b+c) =a-b-c Transitive property of =
3) Let a (b c) = x

a = x + (b c) Definition of subtraction
a = x + (b + -c) Theorem I
a = (x + b) + -c A.P.A.
a + c = (x + b) + (c + c) Addition axiom of equality
a+ c = x+ b+ 0 Additive inverse
a + c = x + b Identity element for addition

(a + c) + -b = x + (b + -b) Addition axiom of = and A. P. A.
(a + c) + -b = x + 0 Additive inverse
(a + c) + -b = x Identity element for addition
a + (c + -b)z- x A. P. A.
a + ( -b + c)= x C. P. A.

(a + b) + c = x A. P. A.
a-b+c =x Theorem I

x =a-b+c Symmetric property of =a-(b-c) =a-b+c Transitive property of =

AN ALTERNATE APPROACH TO PROOFS OF INTEGER THEOREMS
This is quite a sophisticated approach in which all integer theorems are
proved by defining an integer in terms of natural numbers and using the
properties which govern operations in the set of natural numbers plus
the definitions of equality, addition and multiplication in the set of inte-
gers. We will give a few proofs using this approach. For a detailed
discussion of this approach the reader can consult "Integers", a pam-
phlet in the "Thinking in Mathematics" series published by D. C. Heath
and Company, or "Introduction. t. Mathematical Thinking" by Waissmann,
a Harper book.
Definition I: An integer is the difference of two natural numbers. The

difference a b will be indicated as the ordered pair (a, b). Each
integer is an equivalence class as illustrated by the following
examples:

+2 = { (2, 0), (3, 1), (4, 2). . (n + 2 , n) 1
-3= (0, 3), (1, 5)... (n, n + 3)

In particular 0 = { (0, 0), (1, 1), (2, 2). . (n, n)
and +1 = { (1, 0), (2, 1), (3, 2). .. (n + 1, n)
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Definition II: Equality of two 122tEars. Based upon the discussion of aninteger as an equivalence class it seems reasonable to make the fol-
lowing definition of equality:

(a, b) = (c, d) (a + d) = (b + c)

Definition III: Addition. The assumption that the set of non-negative
integers is isomorphic with the set of natural numbers combined
with the definitions above seems to make the following reasonable
definition for addition:

(a, b) + (c, d) = (a + c, b + d)

THEOREM I: CLOSURE PROPERTY OF ADDITION
Let I = {Integers} s}. (a, b) + (c, d) E I

a + c Natural Numbers (N) Closure property of N for +
b+deN Closure property of N for +

(a, b) + (c, d) = (a + c, b + d) Definition of + in I
Since (a + c, b + d) is the difference of two natural numbers,
by definition it must be an integer.

THEOREM II: COMMUTATIVE PROPERTY OF ADDITION
(a, b) + (c, d) = (c, d) + (a, b)
(a, b) + (c, 13) = (,_ + c, b + d) Definition of + in I

= (c + a, d + b) C. P. A. in N
= (c, dy + (a, b) Definition of + in I

THEOREM III: ASSOCIATIVE PROPERTY OF ADDITION
This should be done by the interested reader as an exercise using
theorem II as a guide.

THEOREM IV: IDENTITY ELEMENT FOR ADDITION
If there is an identity element for addition in I, it can be found
by posing the following task:
Find { (x, y) (a, b) + (x, y) = (a, b)

(a, b) + (x, y) = (a + x, b + y) Definition of + in I
If (a + x, b + y) = (a, b) then a + x = a Definition of = in I
If a + x = a then x = 0 Identity element for addition in N
By the same reasoning y = 0

Therefore, the identity element for addition in I = (0,0)



UNIT IV

THE RATIONAL NUMBER SYSTEM

INTRODUCTION

It must be properly noted that mathematics has always been
invented as a result of two motives: (1) Academic interest,
and (2) practical need. Fractions - their innovation and use -
were the result of the latter. In the quest to refine and
improve ways of measuring, man soon realized that he needed
more than natural numbers; he needed parts of numbers.

That this need was felt very early is evident in the famous
"Rhind Papyrus", an Egyptian Document some 3500 years old.
In this manuscript, the use of fractions is pointedly referred
to. However, it is significant that the Egyptians did not
develop their magnificent discovery. This lack of enthusiasm
is evident in much of mathematics history. It seems as though
the development of mathematics was taken just as far as prac-
tical need required and no further.

In any case it seems as though a rigorous development of the
kind of number, represented by the fraction, was to be left to
the mathematician.
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THE INVENTION OF THE RATIONAL NUMBER

The invention of the system of integers came about in an
effort to solve the open sentence:

a + x = b, where a and b are natural numbers.

Now consider the open sentence:

a x = b, 'Where a and b are members of the set
of integers with a 0. To solve for x in this open
sentence leads to some interesting results. It may
seem as though an integral solution is possible,
thinking in terms of b as some multiple of a, 1. e.,
a = 3, b 9;

3x =9

3x = 3 3 (renaming 9)

x 3 (cancellation)
Thus the solution is the integer.3.

After such an example, the premature statement may be
made that no new numbex is needed to find the solution for
such sentences, I. e.,. the set of integers Is sufficient. How-l.

ever, when a and b are prime or relatively prime (b is not a
multiple of a), a different situation occurs. Consider the fol-
ic:Airing example:

3 x = II
Using the set of integers as the universal set, there is no
solution for the variable x such that a true statement will
result.
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To solve this dilemma, it is necessary to invent a new number system
which will generate a solution to all open sentences of the form:

a + x = b, where a, bC, I and a 10
We shall define this new number which will be called a Rational Number
in the following way:

DEFINITION OF A RATIONAL NUMBER If a and be. I and a 1 0, then
there exists some x, called a Rational Nurnber, such that
x-

a
In effect, by defining the Rational Number in this way, we could at
the same time define the operation of division, with x being the
quotient of two integers.

SYMBOL FOR A RATIONAL NUMBER A Rational Number is a number
and as such cannot have a numerator or denominator. However, that
symbol for a Rational Number which is called a Fraction, can and
does have a numerator and denominator,.

INTEGERS AS A SUBSET OF THE RATIONAL NUMBERS The set of
integers constitute a subset of the set of rational numbers since
every integer expressed is the ratio of two integers.

Example: INTEGER RATIONAL NUMBER

+3 +3ir
- 7

-1-
0 0

+1

Exercises:
(1) Why are the following considered names for rational numbers?

(a)

(2) If x, y and z 6 I, state whether the following are rational numbers
and justify your answer.
(a)

(b) x y

(c) 6x + 5z
9 - continued



(3) Using the information given in problem (2),
6x would not necessarily be a rational number.

Can you reason why this is so?
Exercises (Answers)

(1) All the fractions represent rational numbers since each
fraction is in the form a with both a and b, integers

(2)

and b 0.

(a) x is a rational number because it is in the proper
"3.
form and 3 1 0

(b) x+ y is a rational number because of the form. Also,
7

x + y is an integer because of closure.
(c) 6x is an integer because of closure; 5z is an integer

because of closure. 6x + 5z is an integer because of
closure. Therefore, 6x + 5z represents a rational
number.

(d) 0 is an integer and z might be 0. The denominator of
the fraction which represents a rational number may
not be equal to 0.

EQUIVALENCE CLASSES IN THE SET OF RATIONAL NUMBERS -
Recall that the principle of substitution uses the idea that a number has
many names. Thus, 2 = 1 + I. The same idea may be extended to the
set of rational numbers. There exists an infinite number of rational
numbers which are equivalent to one rational number. This infinite
set is called an Equivalence Class.

DEFINITION OF EQUIVALENT RATIONAL NUMBERS Two rational
numbers, a and c, where a, b, c, and de.I and b 1 0,

13

d 1 0 are said to be equivalent if and only if ad = bc.
Using this definition, it can be seen that 1,

3
2,
6

3,
9

5, . . are
15

rational numbers and that these numbers constitute an infinite set
called an equivalence class.

Also, any equivalence class can be represented by one of its elements.
Thus 14 names an equivalence class the basic member of which is 1.

2
By a basic member, or basic fr-ction, we mean that member of the
equivalence class whose numerator and denominator have no common
factor other than +1 or -1. - continued
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Exercises:
(1) Name five members of the equivalence classes named by the

following rational numbers.

(a) 1 (b) 8 (c) 4 (d)
8 7 3 9

Exercises (Answers)
(1) (a) 1, 2,

8 16
(b) 16,

7 14

3, 4, 5, .

24 32 40
24, 32, 40,
21 28 35

(c) 12 204, 8,
3 6

(d) 7, 2.4,

9 18

16, .

9 12 15

21, 28, 35, .

27 36 45

RELATIONS WITH RATIONAL NUMBERS Relations with rational
numbers can be as clearly defined as relations in the systems
already discussed.

EQUALS RELATION For any two rational numbers a and c
b d

a c, if and only if (4=1: ), ad = bc
b d

Example: 3 6 because 3 8 = 4 6. Also because this is an
4 8

"if and only if statement it can be said that if
3 8 = 4 6 then 3 6

4 8

INEQUALITIES AND RATIONAL NUMBERS The familiar "less than"
and "greater than" relations can also be applied to rational
numbers.

"LESS THAN" RELATION
For any two rational numbers a < c 'taw+ ad < be

b d

"GREATER THAN" RELATION
For any two rational numbers a > c 4=4* ad > bc

b d
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Exercises:
(1) Establish the relation of the following rational numbers by

using the principles just discussed.
8 8

(a) 6 (b) 22--c (c) 7

Y 2Y 2 6

(2) Arrange the following rational numbers from lowest to highest.
5 7 4 19 6

1
8

6 8 9 42 12 9

Exercises (Answers)
(1) (a) 6 < 8 <-711. 6 11 < 9 8

9 11

(b) x = 22.,c x(2y) = y(2x), y
Y 2Y

( c ) 7 8 < 7 6 > 2

(2) 4 < 19 < 6 < 5 < 7 <
9 712 12.

PROPERTIES OF EQUALITY

The properties of equality which have already been defined will be re-
stated here. In order for the' system of rational numbers to have the
equivalence relation these properties must be true for rational numbers.

(1) Reflexive Property For all rational numbers,

(2)

a I a

Symmetric Property For all rational numbers,
if a c , then c a

b d d b
(3) Transitive o arty For all rational numbers,

if a c and c e, then a e
cl T T

(4) Additive Prerty For all rational numbers,
if a = r then a+ e cr

Multiplicative ert For all rational numbers,
if a e then, a, c e. cr E

(5)
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OPERATIONS USING RATIONAL NUMBERS

RATIONAL NUMBERS A basic idea in regards to fractions which will
_10...,.....,11._.

be useful in several instances is the following true sentence.= a $1; a e I, b E I, and b 4 0.

ADDITION OF RATIONAL NUMBERS For any two rational numbers,the symbols for which have equal denominators,a, b. +12= a +b-- -- I --CC C C

The above definition can be verified by means of the distributive prop-erty.
a b 1 + b 1_ (a+b) 1_ a+ b.1 .1110. + 1010. am.

and a+b (a+b) .1=a.l+b.1 =a+ b.
c c cHowever, the distributive property for rational numbers has not beenassumed at this point and cannot be used in a proof. If it were, theabove definition could be referred to as a theorem rather than adefinition.

Consider the addition of the rational numbers a =

= ad
Ea since a(b4= b (ad) Definition of equal rational numbers.

c bc
= ra- since c(bd) = d(bc) Definition of equal rational numbers.

Thus, a + c ad + bc = ad + bc Definition of equal rational num-B '6U Ea Cdr biers and principle of st.bstitution
Therefore, the addition of any two rational numbers is given as:

ad + bc

Example:
Add the rational numbers 7 , 9

-$Accordirs to the definition of Addition of rational numbers:7 9 47 x 8) +(5x9 56 + 45 101+ x 8) 40
It is possible to use a different approach by noting that(7 x 8) _ 56 d 9 (9 x 5) 45 Equality of rational5 (g x 8) To. an

numbers.Thus, 7 9 56 45 56 + 45 10171' = TY TT 40 "75
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MULTIPLICATION OF RATIONAL NUMBERS Although many appealing
devices are used in the elementary school to develop the idea of
multiplication of "fractions", for us the following definition will be
necessary.

Definition: For any two rational numbers, a and c :

a c

b d
a x c
b x d

Example: 3x 3x 52 15xy
7 8 567 8

According to the definition 1 3 x 1 3
173

since 3 _ 3 we say that 3 = (3 1)
-r (

Example: Multiply the following rational numbers:
(a) 2 h) 2g + 2H

4 7 28

(b) 5 9 ? 5
TO fg -f z

9 I
= -2-

Therefore, 5 9 1 1 1
10 I$ T T

since 5 x 2 = 10 x 1

since 9 x z = 18 x I

(c) Using the method of (b) multiply 4 . 8

POSTULATES FOR TH RATIONAL NUMBER SYSTEM
The last step in the development of t e rational number system is the
statement of the existance of certain xioms which must hold true for
the rational numbers under the opera ons of addition and multiplica-
tion.

POSTULATES
(1) Closure For any two rational numbers, as , cc , their sum must

be a rational number. For any two rational numbers
a and C, their product must be a rational number.

(2) Commutativity For any two rational numbers, a and

a c a+ + (The Commutative Law of Addition)b d d b
For any two rational numbers, a and c-5 a-

b d
c c . (Commutative Law of 4ultiplication)a

(3) Associativity If a, c
a

and e are rational numbers, then
E.

- continued



a

=C. +cU +e (Associative Law of
Addition)

(Associative Law of
Multiplication)

(4) Distributive Axiom If a c and a are rational numbers, then
E. a

a . c + e = ac + ae
ka bd ET

(5) Multiplicative Identity There exists an identity element,
such that for all rational numbers a a . 1 a

(6) Additive Identity There exists an identity element, 0', such
that for all rational numbers a a + 0 a

E '6'
(7) Multiplicative Inverse (Reciprocal) For all rational numbers,a,

b, a 0 and 'I:, 0, there exists a rational number,
b, such that a b
a b a =1

Many times this postulate is stated differently as: For all rational
numbers, a, there exists some rational number called the recip-
rocal of a (the reciprocal has the form, 1, or a-l), such that
a . 1 = 1 where a 0.

a
a

(8) Additive Inverse For all rational numbers a, there exists
E

the negative of a a such that a + _a = 0.
' '

CANCELLATION PROPERTIES Although cancellation properties are
not always stated as postulates for the rational number system,
they are helpful in problem-solving and so will be stated.
(1) Cancellation Propery of Addition If a c and e are

b d f.

rational numbers and if
b
ac

f
e c

+ thend da e
= T

(2) Cancellation Property of Multiplication If a c e are
rational numbers and c 0 and if a,c_e.c then
a e

T



FINDING THE BASIC MEMBER OF AN EQUIVALENCE CLASS

This topic deals with "simplifying fractions". However, the termi-
nology, "simplify" or "reduce", is misleading, since the student is
led to believe that he is somehow changing the value of the rational
number.

A more logical approach is used here to explain the procedure of
renaming a fraction so that it is the basic member of the equiva-
lence class which it represents. Three principles are used in the
algorithm discussed:

(1) Renaming an integer
(2) Definition of multiplication of rational numbers
(3) Multiplicative Identity for rational numbers

DEFINITION: The equivalence class {1 2 3 4 lhas as its

basic member the rational number, 1. Note: 1 is certainly a
rational number, since it can be put in'the form a, i. e.,

ALGORITHM: Consider the rational number a with a,b,c I and
b

b,c 1 0. Also, a and b have no common factor other than +1
or -1.

ac ax c
Z" fix' c

a x cc
b

a x 1

a

Example: Name
sented by the

a) 14
28

the basic
following

1

Renaming

Definition of Multiplication of
rational numbers.

1= 1f40fl 2 3
V-2-431 r ,/

Multiplicative Identity

member of the equivalence class repre-
rational numbers:

Renaming

Definition of Multiplication

14
ri=
Multiplicative Identity

48.



Example: Name the basic member of the equivalence class repre-
sented by the following rational numbers:

E / 14 14 I x 14 Renaming
28 28 2 x 4

Exercises:
ti)

1 14= .rx ir Definition of Multiplication

2

1
14
14 = 1

Multiplicative Identity.

Multiply and find the basic form to represent the product:
a)

b)

c)

7 9
8

x
5

-6 -5

t.

(2) Add and find the basic form of the rational number which
represents the sum:

8a) 7 +
......

b) 7z + 8z

f + u
g

c) h

Exercises (Answers)
(1)

a) 7 x 9
8 5 8 x 5 40

x 9 63

b) -6 -5 - = 3 x 10 = 3 x 10 3 x 1 = 3
4 x 10 Z 10 4- Z

c) 5.x 6t
7t 8

,30yt
56t
15y x 2t
28 x 2t
iSirx 2t

28 2t
45.8E x 1

1.51.
28

49.



(2)
a) 7 4. 8 63 + 64 127

8 9 72 72

7z + 8z 42z + 64z . 106z_ 53z x 2
"6" -Cr 24 x 2

53z 2x

b)

c) f +
g gh

IT53z,.. a.

53z
24

50.



51.

DENSITY OF THE RATIONAL NUMBER SYSTEMiMIM.
The rational number system presents many challenges not encountered
in the system of integers. Not the least of these challenges is the
abstract concept of "Density".
Consider a number line which consists only of natural numbers:

-.... .

0 1 2 3 4 5 6
.. a

7 8 9 10

If the question is asked, "What is the successor to the natural
number 2?", the answer is obviously the natural number 3; since by
definition, this is the way the natural number system is developed. To
verify that there can be no natural number between a natural number
and its immediate successor, consider the following theorem:

Theorem: There is no natural number between 0 and 1
Proof: The method of proof is one invented by the Greeks and

carried down through the ages: "Reductio ad Absurdum";
this means to assume the opposite of what is to be proved
as being true and show that this assumption leads to a
contradiction.

Assume that there is some natural number, call it "n", such that
0 < n < I

then, n0<nn<n ' 1 (Multiplicative Property)
thus, 0 < n2 < n

Therefore, we have the square of a natural number which is less than
the natural number itself which is a contradiction. Since our conclu-
sion is false, our assumption must also be false, therefore, there is
no natural number between 0 and I.
To be strictly correct the natural number line would be constructed
in the following manner:

. . . . . . . . .
0 1 2 3 4 5 () 7 8 9 10

The line segment is not drawn since this gives the false impression
of "betweenness".
To extend the number system to include the set of integers leaves a
physical situation much like the number line ue .,g natural numbers.

-4 -3 -2 -1 0 1 2 3 4

Lermimmilemmidim_..6,.g.........-...,m--..-,



RATIONAL NUMBER LINE AND DENSITYThe invention of the rational number system leads to the innovation

of
"betweenness", i,e between any two rational numbers there is

another rational number.
Density Theorem: Between any two rational numbers there is another

rational number.Proof: Let a and R and b > 0, d > 0, bd > 0; suppose thatc-u.< . Consider the rational number (ad + bc)
2bd

1)

2)

3)

4)

1)

2) If ad < be ad 2 < bcd3) If ad 2 < bcd 24ad2 + bcd4) d(ad + bc) < c(2bd)

since t < , then ad < bc
Definitionif ad < bc, then abd < 132 c
Multiplicative Property2abd = abd + abd < abd + b 2 c Additive Propertytherefore, a < (ad + bc)

b 2bd

If-<
ad < bc

5) (ad + bc) d < (2bd)c
6)

therefore, (ad2+bdbc) <
Thus the proof establishes that

Definition

Definition

Multiplicative Property< bcd + bcd Additive Property
Distributive Property
Commutative PropertyAssociative Property

Commutative Property
Definition

(ad + be) < c
2bdIt is now possible to construct a rational number line with points cor-

responding to rational numbers between any two rational numbers.
3 s3between

-2 -1 0 I 2 3 4 5
r 1 -r-r 1 171.1"1"To construct a continuous line is still inaccurate since there are gaps

in the line, i. e. , points on the line which do not correspond with any

rational number. These gaps will correspond to what are called
"Irrational Numbers". The idea of an irrational number can be under-

stood by considering the next topic.



rrirlf.t.*?.?..",,Ar,";;,!"- 402060.0,'''.3tr.VCtW

Alowsout, ......*M1=0101611.0001.00

53.
TERMINATING AND NON-TERMINATING DECIMALS

Through the centuries, because of the universality of base 10 andman' s constant efforts to express mathematical ideas in conciseform, certain fractions nave been expressed in what is known as"Decimal Form". Because of the frequency with which rationalnumbers; such as 3 , 4 , and 23 appear, the use of a10 100 1000period, known as a decimal point, to take the place of the denomi-nator of the fraction, has been invented.
TERMINATING DECIMAL By a Terrnirtk1ILI)e6al is meant adecimal which may be expressed as rational number with adenominator which is a power of 10.Example: 34 is an example of a terminating decimal since itmay be written as 34 = 34loo

NON - TERMINATING DECIMAL By a Non- Terminatin7 Decimal ismeant a decimal which cannot be expressed as a rational numberwith a power of ten as denominator.
Example: . 333333333... is an example of a non-terminatingdecimal. Non-Terminating Decimals can be of two types,-repeating and non-repeating.

NON-TERMINATING AND REPEATING DECIMALS A Non- Termi-nating, Repeating Decimal is a decimal which cannot be ex-pressed as a rational number with a power of ten as a denomi-nator, and has a certain sequence of digits which repeat.Example: . 3333333... is a non-terminating, repeating decimalwith the digit "3" repeating.
454545.45... is a non-terminating, repeating decimalwith the digits "45" repeating.

Although this type of decimal does not have a power of ten as a denomi-nator, it can still be expressed in rational form through the use of aspecial method:
Let a = . 7777777...
Problem: To express the number "a" in rational form, i. e.

q 0 and p, qe I
Proof:

1) a = . 7777777777...
2) 10 = 10

Reflexive Property3) lQa = 7. 7777777777... Multiplicative Property4) 9a = 7
Cancellation Property with(1) and (3)



5)

6) -9
(9a)=

9) a

8) (1) a =

9) a
Example:

100a

7

a

Reflexive Property

Multiplicative Property
7
3 Associative Property and

Definition of Multiplication
7
9 Multiplicative Inverse

Multiplicative Identity
= .232323...
= 23.23232323...

99a = 23
a = 23

Exercises:
1) Identify the following as terminating or non-terminatingdecimals:

(a) 4 (b) 7 (c) 8 (d) . 789789...8 15 9
2) Change the following to rational form:

(a) .606 (b) .67 (c) .145145145...
NON-TERMINATING NON-REPEATING DECIMALS Decimals,which are non-terminating and do not have a digit or sequenceof digits which repeat, are called Non- Terminatix5, Non-aspeatmals,. Such decimals are not rational numbersand cannot, therefore, be put in rational form. It was thiskind of number which was referred to when the "gaps" in therational number line were mentioned. This kind of number iscalled an Irrational Number.

Exercises: (Answers)
1) '(a) Terminating

(b) Non-terminating,
(c) Non-terminating,
(d) Non-terminating

6062) (a) a -- 606 = 3--rmy

67a = .67 = -

a

but repeating
but repeating

(b)

(c)
1000a

999a

a

.145145145...
145. 145145145.. .

145

145
17917

303
500

Multiplicative
Cancellation

Property

Multiplicative Inverse 1
-991-

54.
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55.RATIONAL NUMBER SYSTEM, ASSIGNMENT1) Use the principles of renaming and cancellation to solve thefollowing:
(a) 3 x y 15 (b) z + 5 = 21 (c) 2d + 9 = 19

2) Name the basic member of the equivalence class represented bythe following rational numbers:
(a)

8 . (b) 36 (c) 9

3) Prove the following with the definitions given in the text:
(a) < ?b. (b)

yf
-461 (c)41 = (d) >

4) Name the postulates which are used in the following problems:(a) 1
3

(b)
3

(c)

= + +

.;= 8x 2x3
= +

= (4. x + x4)

- -. x (5 + 4)
- x (9)

- 9

5) Name the multiplicative inverses of each of the following rationalnumbers:
(a)

(b) (c) 5 (d) 0 (e) (f) y)I
-3

6) Find a rational number between the two rational numbers given:
(a) 4 (b) 16' 00 (c) P 4 (co

7) Change .172851728517285... to rational form.



56.

RATIONAL NUMBER SYSTEM ASSIGNMENT ANSWERS
1) (a) 3 x y = 15 (b) z + 5 = 21

3 x y = 3 x 5 Renaming z i- 5= 16 + 5 Renaming
y 5 Cancellation z = 16 Cancellation

(c) 2d + 9 = 19
2d + 9 = 10 + 9 Renaming (19)

Zd = 10 Cancellation Property of Addition
2d = 2 x 5 Renaming (10)
d = 5 Cancellation for Multiplication

2) (a) 2. (b) 3 (c)
8 1 4

3) (a) < 7 +930< 35 (b) t÷gca4 36 it 16

ic,
" 28 Z <aamg4

28 = 28 (d) ;37- > 7 x 5 > 8 x 3

4) (a) Definition of addition or renaming
(b) Commutative of multiplication and definition of multiplication
(c) c -1) Definition of .multiplication or renaming

c-2) Commutative of multiplication
c-3) Distributive Law
c-4) Renaming 5 + 4
c -5) Definition of Multiplication

5) (a) 715 (b) Tz (d) none (e) ..X. (f)
-3

-9 (x + y)

6) (a) 5 2
12 (b) 417)0" (c) (d) 462-)

7) Rational form: 17285
99, 999


